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This paper is an introduction to the method of characteristics

for solving problems of one-dimensional, non-steady gas flow.

' ing Riemann's approach, it can be shown that wave elements propagate along

certain lines which are identical with characteristics lines. Con-

struction of these lines in the position-time plane gives a clear picture

of the motion of waves in ducts. Several new techniques for obtaining

solutions of special problems are suggested.
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INTRODUCTION

Problems in the field of non-steady compressible flow are becom-
ing increasingly importent. As long &s the flow may be treated as one-dimen-
sional, the method of cherscteristics is & most useful tool to obteain
grephical solutions to given problems. One objection to thie method occs-
sionally ruised is that "it is & mechsnicel procedure where the physicel
picture may be completely lost". This has not been the experience of the
writers, who feel that keeping the physicsl side in mind mekes applica-
tionn of the method considerably eesier. This difference of view may, perheups,
be explained by pointing out two slightly different interpretuations of the

rethod.

Methematically, the problem is to solve certein partiel differen-
tial equations. These equations have associated with them two families of
curves, the characteristics. Through every point in the position-time plene
two such lines mey be drawn. The network of these lines forming the so-
called charascteristics diagram, covers the entire plane a«nd its pattern is
Ndetermined by the boundary conditions. A change of conditions at some
region of the boundary effects the diagram only along characteristics lines
starting at thet region. In any given case, the characteristics diagram is

constructed according to certain rules and the values of flow velocity and

state parameters sre obtained from the diagram.
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The other possibility is to derive the propagation leaws for
wave elements directly from the fundemental relations. It can be shown
that these wave elements travel slong certain paths in the position-
time pleane which are identical with charucteristic 1lines. Diagrams
constructed in this manner will be called wave diagrams. Values of
flow velocities and state parameters are obtained from the diagram in
the same way as from a characteristice diagram and, the result, of

courcge, is the same in both cases. Both procedures are used in the
1)2)394’5 ’6

literature

In either case, the method allows investigation of non-steady,
one-dimensional flow, giving flow velocities and state parameters as
functions of time and position. It is possible to treat flows in ducts
of variable cross-section provided they may be considered one-dimensional
with sufficient accuracy. Experiments have shown that in certuin cases
the flow pattern in the immediate vicinity of an open end may not be
considered one-dimensional. Therefore, at such points, velocity deter-
minations may not lead to significant results. This report being of an
intrcductory pature, is limited to isentropic flow and, therefore, does
not treat heat addition or very strong shock waves. The method may be

extended to cover such cases but the procedures then become considerably

more complicated.

B

.
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Although the principles of the method presented in this paper are '
not new; the need was felt for a description Atreséing more the practicdl
side thar was done in pravious presentations. No c~laim for originality

is made but it is believed that some of the procedures described are new.

The method as described in this paper has been found to be a
useful tool for preliminary investigations of problems of non-steady gas
flow since a general picture of the wave motion is readily obtained.
For a more refined trestment it is necessury thet more elaborete proce-
dures be used which include non-isentropic flow &nd continuous changes

of cross section. These techniques will be reviewed in & future paper.




CORNELL AERONAUTICAL LABORATORY
Buffalo, New York
Report DD-420-A-12
I . LIST OF SYMBOLS
v u Purticle velocity
a Velocity of sound
{
| w Velocity of wave propagution
l p Pressure
| Density
| X Distance coordinate
i t Time
| ", Arbitrary reference value of a
Po Arbitrary reference value of p
Lo Arbitrary reference value of length
| X
& I,
r = uot.
; u
; v = 3
| o
| A = 2
%
w
| w = -
bl
Ag = Volocity of sound outside the tube (non-dimensicnal)

*
A - Az .'_]:_ Uz

|
|
!
‘ P = U+fBaA
]
1
i

Q = U-BaA

AA Change of A across a wave element
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Chunge of U across a wuve element
Function defined by equation (18)
Cross-secticnal urea of tube

Piston velocity (non-dimensionul)

Rutio of specific heats
2
7 -
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I. IESSUKE WAVES OF FINITE AMPL1TUDE

A problem in non-stesdy gas flow is solved once the stute par-
ameters snd flow velocity are known &t eny point es furctions of time.
All studies in this paper relste to one-dimensional flow und isentropic
stute transformations. 1t is sufficient to find tihe solution for the
flow velocity u and one stete parameter since other stnte peremeters mey
then be obteined by meuns of the isentropic flow relations. Instesd of
pressure p or density O , it is more convenient to select the velocity

of sound s as the state parumeter where a :V'ng' und 7 is the

- ratio of specific heats. The derivation of the relations leading to the

construction of wave .diagrams follows the general approsch of Riemann7.
In the Appendix,.an outline is given for the mathematical basis of the
method of characteristics as applied to non-steandy, one-dimensional

flow.

The motion of the gas is governed8 by the eguation of contin-
uity (1), the equation of motion (2) &nd the condition of isentropic

flow (3)
% .49 ,pdu . g

ot ox dx )
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¢ d L g _ _ 9% ge
FREE LR S ‘2’

y~-1 ¢€
42 - % (3)

Multiplying equation (1) by b4 -3- end adding equations (1) and (2) gives

By using equation (3), Q@ mey be eliminated from this equation, yielding-

ing
d 2 ( A 2
+— + Y d +_ ‘-
g brsa) s (wte) T (wtyqe) =0 @
It is convenient at this point to introduce the dimensionless
variables

Sk . %t
, & LoTund r Ly

(positive to the right) =

U= A:

u
oo ?
where &, ahd L, are arbitrary reference values of the velocity of sound and

length, respectively. In dimensionless form, equation (4) becomes

3% (Ut-2-a) + (uta) ?Q- (vt £-a) = 0

E -
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Defining
P = U+ A
Q= U-gBA
o -5
&nd ﬂ o

the last relaticn represente the two equations

%+(U+A)g_: 50 (4')
and
(4")

'g?°+(U'A)?aTQ : 0
Equations (4) are wave equations which indicate thut the quentities P and
Q propagete with velocities ¥ = U + A end W= U - 4, respectiveiy. Here,
W= g% is the dimensionless form of the propagation velocity w. Aslong
&c U is esmaller then A, it is apperent that equstion (4') represents waves
travelling from left to right while equation (4'') epreserts waves travel-
ling from right to left. 1In éeneral, waves truvelling in both directions
are present at the same time. According to eyuation (..'), a value of P
remains unchanged for en cbserver who moves with the wave from left to
right with a velocity U + A, whether or not he crosses weves travelling
from right to left. However, depending on how the wave wes created, each
part of it has its own value of P propegeting with its own churacteristic
velocity U + A. Similarly, velues of Q remain constant for an observer ’

moving with a velocity U - A, whether or not he crosses waves tr&velling

<9 -
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from left to right. Therefore, if there are no wavee truvelling from
left to right in & certain region, P is constent within that region.
Similarly, Q is constant within a region where there are nn waves travel-

ling from right to left.

In the sbsence of & generel solution for equations (4') and
(4"), the following procedure is used to solve given problems. Each
wave 1s approximated by & number of wave elements in th: form of steps
each of which is characterized by its values of A end U (Fig. 1). The
values of U and 4 chenge from one element to the nmext &nd the increments

will be denoted by AU end AA,

8y =y -y,

AA = Ai = Al-l (5)

In the §, 7 -plane, the path of each element may be drawn as
& line, the inclination of which corresponds to the wave velocity :—51,:
(Fig. 2). Each line is lebelled by its strength 4A . The velue
of AU  1is not required because of the relastion between AA and AU
to be derived below. These lines divide the field into a number of
regions which for easy identification will be numbered 1, 2, 3, etc.
Such plots will be referred to as wave diagrams. All lines in Fig. 2

_represent element: of & wave travelling from left to right and, therefore,

all regions have the vume value of Q because of the absence of waves mov-

ing from right to left. It then follows from the definition of Q that
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AU = B AA (6')

This relates the increments of U and A across & wave travelling from
left to right. However, each element of this wave has a different

value of P

ReU AL Brlpt By, BelUp+ By, .

and the propagation velocity W = U + A is different for each element.

Similer relations hold for the case in which only waves travel-
ling from right to left are present. Then, P Is constent and Q@ has different

values for each element of the wave. The definition of P yields
AU = - BAA (6")

which relates the increments of U and A across a weve truvelling from right

to left.

In order to study the intersection of two waves travelling in
opposite directions, consider one element of each having = strength AA
end AA; , respectively, before intersection (Fig. 3). After inter-

i

section, let them assume the values aA' and AA; . Regions 1 and 3

are separated by a wave travelling from right to left &cross which P is

constant, therefore, P| = P3. Similerly, P, = Py, Q1 = Q2, end Q3 = Q4.
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From these conditions, it follows that A= AA' and AA = AAlu. This
means that the strength of a wave element is unalterea by intersection
with other elements. However, its speed is changed by intersection.
For example, the wave marked AA in Fig. 3 moves with a speed

'1 = Uy + A} wvhile after intersection its velocity is given by
Wy = (U -BoA) + (A + 8A) = U+ A +(1-5) 84
A positive velue of 484 corresponds to a wave for which the
velécity of sound, or the density, or the pressure after panssage of the

wave is higher than before. This is called a compression wave. Simi-

larly, a negative value of AA corresponds to an expansion wave.

II  PROPAGATION VELOCITY OF COMPRESSION WAVES

It was shown in Section I that wave elements travel with a
velocity w=u e Imagine that smul. disturbances are created in
some manner and propagate through the gas in & tube. The velocity of
eound at a point efter the first element of the wave has passed will
be higher or lower depending upon whether the wave is & compression or
an expansion wave. In t'he case of a compression wave, each wave ele-
ment travels in a medium which has been compressed by the previous

elements and will, therefore, move with a velocity which is greater than

that of the preceding one. Successive wave elements may, therefore, over-

take each other forming a single element of combined strength (shock wave).

- if -
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In the case of an expansion wave, each element effects a pres-
sure drop and, the following waves travel slower. Therefore, successive

elements fan out and no shock is formed.

If a shock wave is formed, it is known that the flow is no

i ‘ longer isentropic and the state parumeters on both sides of the shock, and
8,9
‘ the propagation velocity ere then related by the Rankine-Hugoniot equations’ .

It, therefore, appecrs thnt the method described in Section I breeks down as

soon as shock weves occur, that is when compression wave elements pombine.
However, for shocks of moderate strength, the isentropic flow relations give
values of the state parameters that agree very closely with those obtained
from the Rankine-hugoniot equations. On the other hend, the deviation of
the propagation velocity of shock waves from the value u': a obtuined for

isentropic flow is appreciable even for week shocks. It is possible to

include shock waves of moderute strength in the wave diugram by still treat-
ing changes of state across the wauve as isentropic (equaticns 6) but using

the relation for the propagation velocity of shock waves which is given by

. & P-p
w u,:‘:\/pl o0 (7

The subscripts 1 and 2 refer to the conditions on both sides of the shock,

end the ¥ sign indicates the direction of motion. Introducing the isen-

tropic relations, equation (7) may te written as
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[

e

WUt A

which i8 in the non-dimensionsl form used in Section I, and again with

Br=fs. Writing Ay = A+ A this becomes

4" [0+ fi
o cJ0eRY -

which may be expended into & series. FRetaining only the first three

W=yt A

terms leads to

] A . AA 22 2\ . (bA Y '
W--U.tA.[H; rld Y (—A,—)] ®)
where l:i::

Since even weak elements of a compression wave mey be con-
sidered as a combination of still weaker ones, equation (8) should be
used for all compression wave elements. It is obvious that this equation

approaches the previous relation W = UL A for very weak waves ( AA=30).

In many cases the third term of the series may be neglected.
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For increasing strength of the shock waves, the assumption of
isentropic changes of state leads to errors which eventually will exceed
the 1limits of the desired accuracy. In general, shock waves with velues
of AA up to 0.14, corresponding to & pressure ratio %% = 2.5
(for ¥ = 1.4) may be treuted in the described way. For stronger waves,

where the isentropic relations do not hold with sufficient accursacy,

methods have also been developed‘ but these will not be tresoted in this

paper.

As pointed out before, expension waves do not form shocks &nd
the relation for the propagation velocity W= 1U ¥ A derived in Section I

should be used throughout.

III. BOUNDARY CONDITIONS AND WAVE REFLECTIONS

Once the initiwl conditions are given, the methods described in
Sections I and II allow determination of the stete of the gas at any point

or any time inside & tube of constant cross section.

When the woves reach a discontinuity, such as the end of a
tube or & change of cross section, weve reflections must occur in order to

catiefy the boundary conditions.

-15 -
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1. Tube closed by a moving pistonm

If a tube is closed by a piston moving with a velocity V, the
gas adjacent to the piston must move with the same velocity.so that at the
boundary U= V. Fig. 4 shows a wave, which may be a <ompression or an
expénsion wave, being reflected from a piston. In region 1 ahead of the
wave U; = V. From equations (5) and (6) one obtains for region 2

Ay = A + AA

and Up = V+ BAA

Denoting the strength of the reflected wave by AA' then for

region 3

A3 = A2 + AAY '
and U3 =V=1Uy - BAA' =V + Boa - Ban
end, therefore AA = AA? | (9)

This shows that the reflectr.d wave has the seme strength and sign as the

incident wave.

2. Closed end of a tube

This 1s merely a special case of a moving piston with V = 0,

so that the boundary condition becomes U = O and for the reflected wave

the same relation AA = AA' applies.
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3. Open end of a tube

At an open end of a tube several cases of wave reflection are

possible.

The conditions before arrival of a wave element are known but
in some cases it is not possible to anticipate the type of flow after re-
flection. In such cases, one can only assume & certsin flow and then

check whether the results are in agreement with the assumption.

In order to calculate wave reflections at an open end the
velocity of sound there must be given. If the state of the outflowing ges
is isentropically related to conditions outside the tube, then the
corresponding velocity of sound at the end is known. If this condition is
not fulfilled the velocity of sound at the open end is not known and some
reaeonable value has to be assumed. The velocity of sound at the open end,
in non-dimensionel form, will be denoted by Ag. As an example, consider
the outflow of gas from a container through a tube to the open atmosphere.
If the pressure in the container was reached by isentropic compression from
atmospheric pressure, then A, is equal to the velocity of sound in the open
atmogphere. If the pressure was rcached in any other wey, an assumption
for Ae¢ has to be made, for insterce the value of the sound velocity obteined
if the gas were expanded isentropically from container to atmospheric

pressure. All relations will be derived with the aid of Fig. 4. With

-17 -
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configurstions which do not allow the flow to become supersonic at the
open end only two types of outflow are possible: (a) U3 < A3 and (b)
03 = A3o

(a) Outflow with tU3 < A3 *

As long as the outflow velocity at the open end is less than the local
velocity of sound, the pressure is equal to that prevailing in the ex-
ternal medium. Since at thut pressure the velocity of sound is equel to
Aeg, the wave must be reflected so that the toundary condition A3 = Ae

(Fig. 4) is meinteined. The following relations may be written.

A = A1 + AA
and A3 =Ag = A2 + ABA' =A14+ BA + AN
Therefore, AA" = - Ad+ A~ My (10)

If Ay = Ap which is the most common case, & wave is reflected with un-
altered strength but a compression wave is changed into an expansion
wave and vice versa. Once ABA" has been found, U3 may be calculated

and checked for the condition that the outflow velocity does not exceed A3.

R

#The upper sign for Uz refers to the right end of the tube, and the
lower to the left end since there U3< O for outflow.
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(b) Outflow with ¥ U3 = A3

As before,
Ap= A+ AA
=0t Banr
and A3 = Axy+ BA =A + BA+ AN
U3 = Uy & B ARk =03t B ( 8A- AN )

The boundary condition £ U3 = Ay leads to2 UL +8 ( 8A- 8K )=

A, + BA+ AK and, therefore,

+
AR ___(ﬂ -l1) AA-U1 -4 (11)
pg+1
where the upper sign refers to the right end and the lower to the left end
of the tube.
(¢) Inflow

A pressure gradient is required to produce inflow and, therefore the pres-
sure aut the open end must be less than the outside pressure. This

8,9
pressure drop may be calculated from the emergy equation > which nay be

written as

A2 L By -k (12)
3 ¢ = Vs = A
B

In addition, the strength of the reflected wave must be such that the

increments for U and A satisfy equations (5) and (6).

U3-U2=;ﬂ (A3-A2)

-19 -




CORNELL AERONAUTICAL LABORATORY
Buffalo, New York

Report DD-420-A-12
where, again, the upper sign refers to the right end. The boundary condi-
tion (12) and the last relation may be combined and solved for A3 and Uj.

Considering the right end only, the solution of the quadratic equation

for U3 becomes

. |
(Bar AN+ b - B (Baps W)

Us g+l

Only one of the two solutions has physical significance. Since the first
term in the numerator is always positive, and, for inflow at the right end,

U3 must be negative, the minus sign in front of the root must be used.

Similar considerations may be applied to the left end.

For computing purposes, the most convenient method is to first solve

for A3 which leads to

\/ 2 (1B a)*
' twmtpmt V(g+ 1 - g )
Ay = B +1 J
The next step is to calculate the strength of the reflected wave
AN = Ay- A (14)
and finally
U3 =Uz2; B AN (15)

In equations (13) end (15) the upper sign always refers to the right end and
the lower to the left end of the tube. As a check, the result for U3 must

correspond to inflow.
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4. Change of cross section

If the cross rection of the tube varies, the state of the flow-
ing gaus also changes. ~Prob1ems of this type may be treated in two different
ways, First, it is possible to include continuous changes of cross
section in the fundamental continuity equation (1) and then derive the

6
relations governing the characteristics networks’ . This is a direct

approach but the resulting procedures become rather complicated.

Second, continuous changee of cross section may be approximated
by discrete steps as was done for the flow parameters. In this way, the
construction of the wave diaéram remains unaltered, and only certcin
boundary conditions at those points where the cross section changes have

to be taken into account.

When a wave reaches ua change of cross section, it will be
partly reflected and partly transmitted. The strengths of the incident,
reflected and transmitted waves will be denoted by A4 A, aAr?

and A A" , respectively.,

The symbol S' will be used for the cross sectional area of
that part of the duct in which the incident and reflected waves travel,
while S" will be written for the cross sectional area of the region

through which the transmitted wave truvels (Fig. 5).

There is steady flow connecting regions 1 and 4 and also 3 and 5.

The two conditions which must be fulfilled in each case are continuity of
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mass flow and conservation of enmergy. These may be written as

s'eal cm=s"- Af - 1, (16)
2
and 012 + B A12 =U, + B A42 (17)

and equivelent relations for regions 3 and 5.

The problem to be solved is the following: given Ay, Uj &nd

A, find A2, Uy, A3, Uz, Ay, Uy, As, Us, AA end  BA". These
are ten unknowns and the same number of relatirons is, therefore, re-
quired. Going from region 1 to region 2, equations (5) and (6) give
two relations. Similarly, four additional equations are obtuined by going
from 2 to 3 and from 4 to 5. Equations (16) and (17) and the equivelent
ralations connecting regions 3 and 5 complete the system of equations.
Analytical solution of the sy.stem is very tedious end several graphical
methods have been described in the literature 1’5.. A different numerical

approach, however, has been found to be more satisfactory.

Equations (16) and (17) contsin U, and A, us the only unknowns.

The following symbol is introduced

* 2 1L 2
A . = A + ﬁ U
so that equation (17) becomes
* *
A = A , (171)
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From equations (17) and (17')

|- pnZ- A

and qf B Airz - B A%;.

If these = e introduced into equation (16), the quantities may

be resrranged to

o ” bl @” [ sy

4 Al

and with the new function
= (0% [ 2 (4] )

equation (16) becomes

L2
K, = Kp° (és"') (19)

*
In order to evaluste K from equation (12), the value of A/A must be known.

From the definition of A"

1
I (U .
1+ 5 (%)

Figure 6 shows a plot of K as function of A/A* where the progress

(20)

>‘!:>
]

*
of the calculation is also indiceted. First, compute A}/A] from equation
(20) and find Kj and K, from the graph and equation (19). K, then corresponds

* x ®
to e value of Aﬂ/AL and since Ay = A} , one obtains A4 and, sgein from

equation (20), also U,. One might think that for certuin values of

- 23 -
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]
gT the value of K, could exczed the possible meximum (Fig. 6). This case,

however, will not occur because &s is easily shown, the meximum value of

4 K corresponds to & Mach number of one which may only occur at the narrowest
section of & duct. Since supersonic flows will not be considered here,
only the right branch of the curve is important. For practical purpocses,

E numerical velues of K are given in Teble 1 for ¥ = Lols

The relations connecting the U and A values in regions 3 and 5

are the same as for regions 1 and 4 btut none of the velues are known.

If A A" were known, the computaticn could proceed in the same way &s

above and finally A" would be found by &applying equations (5) and (6)
to regions 2 and 3. The vezlues for region 2 are celculated in the usual
menner from those in region 1an’ A4. The anelytical approach to the
problem leads to very cumbersome relations. It was found more convenient
to guess the value of AA“, end then calculate the values for regions

3 and 5 in the same way &s for regions 1 und 4. Equstions (5) and (6)

will give two values of AA' from the difference of the U and A values

respectively, end these two values must egree within the accuracy desired.
*
If they do not agree, the procedure is repeated with & new guess of AAr.

—

# A number of cases were calculated and it was found that the strength of
the transmitted and reflectec waves does not depend very much on the
value of Aj. From these results a grsph was prepered to be used as an
ald for meking the first guess of Ar". This is shomn in Fig. 7 where
the ratio AA"/ AA is plotted as function of S"/S' for different values
of ;.
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5. Interface Letween two gases

In all cases treated so far, one gas only was involved in the
fiow end all chaunges of state were isentropic. The problem will now be
generalized to the flow of two guses eeparated by a plene interface. The
necessary condition for the interfece to exist is that both gas velocity
and gas pressure on each side be equal. Changes of s.ute within each
gas will still be trected as isentropic. A wave element arriving at the
interface will be partly transmitted and partly reflected, and at the

seme time the velocity of the interfuce will be changed.

In Fig. 8, the position of the interface is indiczted by a dotted
line. Interfece, incident, reflected and trapsmitted waves divide the area
into five regions marked 1 to 5. In the analysis of the wave reflections
it is convenient to use actual state parameters and to introduce the
usual non-dimensional variables in the finel formules only. With refer-
ence to Fig. 8, the boundery conditions may be written

u] = u ’ Pl = Pk
(21)

and u3 = u5 3 P3 = P5-.

One may imagine the gases in regions 1 and 4 to be isentropically compressed
from some arbitrary pressure p, at which the corresponding velocities of

sound are ajq and 8,0» respectively,

- 85 <
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n _ (2 )‘;‘i.
Po a30

'C

and .p_L. = (._.a_A_ )"""
‘ Po a0

where the ratio of specific heats ¥' refers to the gas in which the re-
flected wave travels wnile ¥" refers to the gus on the other side of

the interfece.

The pressures in regions 3 aund 5 mey also be expressed in
terme of the sound velocities teking into account the strength of the

wave elements,

92.-_-.(&1+a1:a+ Aa) i

 2r
7'-

2r
wi B (St Ber)e
Po aL0

If the incident pressure wave trevels from left to right one may write i
for the velocities
2
W=y + oy (Aa - Ba')
and u = uy 4+ 7"2-7 Aa".

Applying the boundery conditions (21) the pressure and velocity

relations lead to the following two equations for Aae' and Aa"

- 26 -
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1 - - -
(22)
"
(l1+ s + Al')-ﬁr—' (844- Aa ),'_"
8] ol t‘
In this general form, the equations can be solved only after
numerical values have been introduced.
Since, generally, the wave stremgth A A is very small com-
pared to the sound velocity, the second equation (22) may be expanded
into a series of which the linear terms only are retairned. It is then
possible to solve the equations with the results
AA' AL T ag T
AA T AL T4
(221)
and AA" 2 Ay ™ M-
AR TN A AT 7=

where the values have been made dimensionless by dividing them by an ar-
bitrary reference velocity of sound. Although the above relations were
derived for a wave travelling from left. to right they apply in unchanged

form to waves travelling from right to left.

The above treatment includes. the special case of two masses of
the same gas but of differeat temperatures moving together. Thus 7' equals

7 and equations (22') reduce to

AA #n o AA" 2A
_h-oM w55 ¢ 4 (22")
A A+ A 1+ A,




CORNELL AERONAUTICAL LABORATORY
Buf 'alo, New York

Report DD-420-A-12

IV PIYSICAL CONDITIONS

A wave diegram can be drawn for specific cases only when the
plysicel phenomena which create non-steudy flow are known. Most
problems met in practice will be covered by one of the ceses described
below or by & combination of some of them. Some considerztion is also
given to the trestment of strong expansion wuves since expansion shock

waves cunnot exist.

1. Moving piston

. It was noted in Section IIT that for a tube closed by & piston
moving with & velocity V, ihe gas adjacent to the piston must move with the
same velocity so that et the boundary V - U, A sudden chenge of V will
cause a wave to be emitted from the piston so that a4u = ' AV and the

strength of the wave is given by

+
in accordancze with equations (6) If V varies continuously with time,
suitable discontinuous steps AV must be selected to approximate the

motion of the piston. At the instant of each step, a wave of correspond-

ing strength A A is emitted.

2. Sudden removel of & partition

A very general type of non-steady flow is produced hy the

sudden removal of & partition separating two gases at different pressures

—

"
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end temperatures. This creutesm interface which is assumed to remain
plane. The boundery condition which must then be fulfilled is that
pressures ;nd velocities be equal on both sides of the interface. It

is clear thet the removel of the partition must create an expension wave
which advances into the region of higher pressure and & compression wave
which moves into the region of lower pressure. The strengths of these
two waves will be derived below. Subscripts refer to the regions as

shown in Fig. 9.

The condition in regions 1 and 2 are given and assuming that
there is no heat exchange across the interfuce, the isentropic relations

muy be applied to each gas individually, as follows,

& \#7
B (a7

P3 a3

21

and P2 = (32_) "=
P, a4

where the ratios of specific heats are 7¥' and ¢" , respectively.

The additional boundary condition- is
1
P3 = P,

Introducing the strength of the waves, these equations may be

combined to give a relation between A aj and Aap

pl.(a] :lAal)‘H' _pzo(a2+‘2Aa2) 2
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The velocity relations (6) give

u=u - £ sy
and U o= u o+ ﬁ" Aay .
With the boundary conditions

u = w
and uz = W,
these may be combined to

B bay = - B be (24)

For given numerical values equations (23) and (24) may be
solved for Aaj; and Aa2. In the special case of ¢'= ¥" where,
however, the two gases need not be the seme, nne also has ﬂ': ﬁ" and
from equation (24) 8a; = - Aap. The actual value of A a may then

be found from equation (23).

Cne may cspecialize the problem still further by assuming the seme
ges on both sides of the partition and isentropic relation between the
stetes 1 and 2. Then

B sy
P2 a2
It is obvious that‘ the stutes of the gas in regions 3 and 4 must become

identical since they are also related to the original states by the

isentropic law and must both have the same pressure. In this special case,

=9 =

e e
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an interface is not formed and equation (23) simplifies to

Aazz- Aa]_:‘——;—— !
If an interface is formed at an open end of & tube, the two waves are

still calculated as before. The one directed outward is immediately re- : i

flected as described in Section III and combines with the other one to

form a single wave advancing into the tube.

*

3. Heat addition to gas flow

If heat is added to the flowing gas the originel assumption of
isentropic flow does not hold any longer and equation (3) must be re-
placed by the energy equation. The graphicel procedures then become

considerebly more complicated and will not be trested her06o

At times,it may be possible to overcome the difficulties in-
troduced by heat addition by meking simplifying assumptions about the

10 .
process . For instance, combustion may be assumed to teke place

instenteneously. If this is done, an instanteneous change of state of
the ges takes place in & given volume and this case then becomes
identical with the on; of a suddenly removed partition treated before.
The assumption of instenteneous combustion may be justified for high
rates of burning where constant volume combustion is approached. For low
rates of burning, serious errors might be introduced by this method. It
mey be possible, however, to treat these problems by meking certain
Bimplifying assumptions about the combustion process. Such procedures are

being investigated at the present time.

-1 =
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4. Strong expeasion waves

It was pointed out in Section I that continuous changes of state

must be approximeted by small discontimuous steps. These correspond to

some arbitrarily selected value of A A which then determines the
accuracy of the approximation. While larger steps than these have
physical ‘significance in the case of compression waves developing into &
shock wave, larger values could not appeer in expansion waves since ex-
pension shock waves do not occur in Section I1I the strength of reflected |

and transmitted waves under various conditions was determined but the

actuel values of A A were not considered. Often the calculated value of
4 A corresponds to an expansion wave stronger then the arbitrary step

size selected for the approximation cf continuous chenges. This case will

occur, for instance, when a shock wuve is reflected as e&n expancion wave

from the open end of a tube. For such cases, the expansion wave hus to

be split up into elements of a strength not exceeding the step size

selected. These elements will all start from the same point of the wave

diagrem and then fan out. It mekes little difference whether all elements

ere made of equal strength or not, as long as they do not exceed the

selected step size.
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V. PRACTICAL APPLICATIONS

1. Gecneral remarks

It is now possible to construct wuve diagrems for the solution of
specific problems. Two exemples were selected. The first of these con-
siders the gas oscillations created in & tube by a prescribed motion of a
piston. The other treats the case ol a wave reflected at a change of

cross-section. . .

vufore starting to draw a wave diagram, one muct decide on the
size of steps into which continuous changes of stute will be broken down
Selecting a value for A A fixes the steps for all other veriables because
of equations (6) and of the assumed isentropic chenges of state. In.
general, a value of A A equal to 0.020 will give satisfactory results and
this value will be used in the following examples. For better approxima-
tions a smaller value may be required while for a qualitative investigation

of a procecs one might choose larger values.

It is customary to draw compression waves as solld lines and
expansion waves as broken lines, and to label each line with its value
of AA. The wave velocity W = %57 is the slope of the lines. The

regions formed by intersecting lines ure numbered for convenience and a

record of the corresponding values of A, U and other quantities of interest

are tabulated on a separate sheet.
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2. Gas waves produced by a movinz piston

Assume a piston moving in a tube which is open at one end es :
shown in Fig. 10. All values have been made dimensionless, using the
length of the tube and the velocity of sound outside the tube as refer-
ence values. The continuous motion of the piston is shown by the full

line and epproximated by the dotted line, as follows

R L T e

r <0 |, E =0 V=0,
O<r<o0.5, E =027 , V=0.2,
0.5<r<1 , E=01 |, V=0,
| <7<1.5, E=0.3-027r, V=-0.2,

r >15, E=0 ; V=0 .

This example was chosen not for its practical velue but rather to in-
clude as many procedures as possible.
When 7 is zero, the piston velocity suddenly changes from

zero to 0.2 and since the change of the gas velocity adjacent to the

piston must be equal to this, a wave must be emitted of such strength

that it corresponds to A U = 0.2. Thus from equation (6')

b A=0.04 since for sir 7 =1l.4und f =25 =5. The velocity of

this wave is 1.126, as given by equation (8). At 7 = 0.5, the piston
velocity changes to zero which corresponds to the emission of an expen-
sion wave of A A=-0.04. Since the step size selected was 0.02 this

expansion wave must be split up into two elements of A A = -0.02 each.
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Being expansion waves, they travel with a velocity (U + A) in their re-
spective regions (Table 2). In the same way, two more expansion waves
are emitted at 7 = 1 and another compression line A A = 0.04 starts

from 7 = 1.5.

When the first compression wave reaches the open end, it is
reflected as an expension wave but must again be split up into small
elements because of its strength. These reflected waves intersect the
consecutive oncoming waves and, each time two lines intersect, their
velocity after intersection must be celculated according to the rules in
Sections I and II. Reference to Fig. 10 and Table 2 will make it easy
to follow the procedure. When the waves return to the piston, they are
then reflected again so as to satisfy the boundary conditions. Note that
regions 9 and 12 correspond to outflow while in regions 21 and 27 inflow
occurs and, therefore, different relations must be &applied to calculate

the strength of the reflected waves.

It is easily possible to follow the mcvements of an individual
particle. 1In region 1, the velocity is zero and therefore the particle
remains on a line parallel to the time axis until region 2 is reached.
There, the velocity is teken from Table < and a line of corresponding

inclination is drawn. This process is contimed end the dotted line

represents the path of the particle.

il el A
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Once the wave diagrum is completed ''uble 2 gives the value of U
and A for each region: Other variables as density or pressure may be cal-
culated from the values of A by means of the adiabatic relations. As an
extmple, Fig. 10a shows the variation of pressure p (relative to the

pressure p, outside the tube)at the piston as function of time.

3. Reflection and trensmission of a wave st s _chenge of cross—section

Referring to Fig. 5, assune the following

Sn: . - -
Y= * 1.2, 4; = C€.980
Ul = 0.400 AA = 0.020

It has been found very convenient to solve this type of problem

by preparing in advance sheets with the general layout of the calculation

so that only the numerical velues had to be entered. This chart is shown
as Fig. 11. The top line contains all the quantities which must be

known in advance. The next three lines contzin quantities calculated in
the straight forward way sbown in Secticn III. Then, a guess for A A"
must be made. With the aid of Fig. 7, the first guess is A A" = 0.0187
and the computation proceeds until finally two values for A A' are
obteined. They are distinguished by the subscripts A end U depending on
whether they were obtauined from the difference of the A or U values,

respectively. A second guess for J A" was then made which led to the

final result A A' = -0.005 and A A" = 0.019,
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APPENDIX:
Remarks on the Characteristics Theory of Hyperbolic Differential Equations

The following principles and theorems are merely stated without
proof to correlate the treatment of waves us shown in Section I with the
characteristics theory of hyperbolic partial differential equationsA’ll’lz.
The principles are similer to those of the widely used method of solving
problems in steady, two-dimensional, supersonic flow by Prandtl and

13

Busemann .

From the equation of continuity (1) and of motion (2) a single
partial differentiel equation of second order may be derived by introduc-
ing a velocity potentiel defined by wu = i?gl The potential equation

X

becomes
By +28 Oy + (22-0a®) gy, =0 (25)
where subscripts denote partial differentiations.

This equation is a special case of the general paitial differen-
tial equation of second order

2pyg + 2D Ixg + copp + d = O
wiich is called elliptic, parabolic or lyperbolic depending on whether
nc-b2 is positive, zero or negative. If the coefficients a, b, and ¢

depend on the independent variables x and t alone, the equation is called

lineur.

e

—




CORNELL AERONAUTICAL LABORATORY
Buffalo, New York

Report DD-420-A-12

For the potential equation (25) the expression ac-b? becomes

2 2
( ¢& B ) ¢ = gl < 0

indicating that it is hyperbolic. Since the coefficients are not

functions of x and t only, the equation is also non-linear.

In the case of & hyperbolic equation, there exist two families

of real curveg in the x, t-plene which are given by

2
8 dt° - 2b - dxdg + c dx® =0 (26)

These curves are culled the characteristics or characteristic curves of
the differential equation. The following existence theorem can be proven.
If the velues of the function Z and its first derivatives Zy and Zt are
given along a line AB (Fig. 12) which must not be & characteristic, then
the values of Z arc definitely determincd iIn the quadrangle APBQ which is
formed by the characteristics through A and B. If the differential equa-
tion is linear then the guadrangle APBY depends on the points A and B
only, while in the case of & non-linear differential equation, it also

depends on the values of Z and its derivatives along AB.

A variation of the initial values of Z or its derivétives in a
segment CB of the line AB will modify the solution only within the region
bounded by CRPBQS while no change takes place in the remaining quadrangle
ARCS. It thus becomes clear that variations of the ihitial conditions

propagate along characteristic lines.

- 38 -
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In general, it is not possible to find .. continuous solution of
equation (25) which also satisfies the given boundary conditions. However,
an approximate step by step solution may be obtained by assuming constant ;
values of ¢x and ¢t within sufficiently small regions of the x, t-plane.
Since a variation of conditions propagates only along chnraéteristic lines
as pointed out ébove, it follows that these regions must be bounded by

characteristics. Plysically, this metnod of solving the differential |

equatiun means replacing the non-steady flow solution by & large number of
small regions of steady flow. Any desired accuracy may be obtained merely
by decreusing the size of these regions. Since two characteristic lines

pass through each point of the x, t-plene the whole plane is covered by a

characteristics network.

Using equation (26), the characteristics of the potential equa-

tion (25) are given by

2 2
(u? = a2) dt - 2udx dt + dx =0
dx _ +
or e u-a

which corresponds to th; statement of Section I that values of P and @
propagate with a velocity of (u + a)'and (u - a) respectively. Since u
and a are not constant but depend on the given problem, the character-
istic lines cannot be drawn in advance but must be constructed from the
initial and boundary conditions. This is a direct consequence of the fact

that the potential equation is non-linear.
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It is possible to linearize equation (25) by a change from the
independent variables x und t to the new variables u and a. By this

process, ¢ 1s transformed into a new varisble Q1 and the equation be-

4
comes .

-1 - -3) Q
nuu_u_fﬂm,,u_}L_)_g e

This is a linear lyperbolic equation with a and u as independent
variables. The char.cteristics of this equation are independent of the

given problem and defined by

du . I 2

2
da -1

This corresponds to equatiom (6) in Section I which relate the relative

values of increments for a and u.
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TABLE 2

2
we=ul [A + 35 AA + 3.5 (%-Q] for compression waves ( 43>0)

W =101, for expansicn waves { » <0)
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APPROXIMATION OF A WAVE BY FINITE STEPS

Fig. 1

REPRESENTATION OF WAVE ELEMENTS IN THE
E, 7 - PLANE. INSERT: CONSTRUGTION OF A
WAVE OF GIVEN VELOGITY W
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INTERSECTION OF TWO WAVE ELEMENTS

Fig. 3

WAVE REFLECTIONS AT THE END OF A TUBE

Fig. 4

T ; ——————



WAVE REFLECTION AT A CHANGE OF CROSS
SECTION OF A TUBE
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WAVE REFLECTION AT AN INTERFACE

CREATION OF AN INTERFACE BY REMOVAL OF A
. PARTITION BETWEEN TWO GASES

/ INTERFACE

/ PARTITION BEFORE REMOVAL

. ..E- =~

Fig. 9




WAVE DIAGRAM FOR THE EXAMPLE OF A PISTON

MOVING IN AN OPEN TUBE
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WAVE DOIAGRAM FOR THE EXAMPLE OF A PISTON
MOVING IN AN OPEN TUBE
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RELATIVE PRESSURE P/P, AT THE
PISTON AS FUNCTION OF TIME




CALCULATION FOR WAVE REFLECTION AT A CHANGE OF '

CROSS SECTION

_g',.' - 12 A, - 0.980 U =0.400 | aA=0020
(i) - 144 | Y .04082 | A=1.000 | u,=-05000
S |
A . 0.7838 | K =0.0273 | K, =0.0/89 24; 0.9895
Ay
Af -0 976/ UYs.03250 A, =~0.9856 | Uy~ 0.3203
4
AR' - 0.0/67 A, </.0043 Uy =0.4/38 %s = 0.4/20
) ]
As = 0.2835 Ky =0.0277 Ky = 0.0399 As*z 0.9736
Ad As

AY = 102/

%p =05240 | Ay=0974/ | U,=05209
3

ARy = A -A, --0 0059

AR} = ”zp- % =-0.0042

e an. . i

AA"=00/90

A%, « 0.9833
As

A =1.02/7

Ay=/. 0046 | Ug=0.4/53 %" - 0.4/34
5

K= 0.0280 | Ky =0403 :'* -0.9732
8

Us - 05280 A, =0F7943 | U, =0.5250
As

AN, - A -A, = -00057

AA, = 4 -% . -0.0042
B

Result: AN =-0.005 AA"'=00r9
! ——————
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ILLUSTRATION FOR THE EXISTENCE THEOREM
OF THE CHARAGTERISTICS THEORY

Fig. 12




